How fuel cells can transform wastewater treatment plants into renewable energy producers

FuelCell Energy: a global leader in fuel cell technology

OPERATING SINCE 1969

FuelCell Energy is a global leader in decarbonizing power and producing hydrogen through our proprietary fuel cell technology

FuelCell Energy is working to:

- Produce low- to zero-carbon power
- **Capture** carbon and greenhouse gasses while simultaneously generating power
- Supply green or blue hydrogen energy
- Store energy from intermittent renewables by converting excess power to hydrogen – then converting back into power when it's needed or delivering to other applications

R Continents

GLOBAL CUSTOMERS

COMPANY HIGHLIGHTS

FCEL Listing: NASDAQ

Commercial Operation

Platforms in

FuelCell Energy

Two leading technologies providing energy solutions

TWO ADVANCED HIGH-TEMPERATURE ELECTROCHEMICAL PLATFORMS ADDRESSING MULTIPLE APPLICATIONS

Application		Carbonate	Solid oxide
Power Gen & CHP	using natural gas, biogas, or H ₂ blends		
	using pure hydrogen fuel		/
Carbon Capture	from platform	V	v
	from external source while making power	V	
Hydrogen	hydrogen, power, water from natural gas or biogas		
	high-efficiency electrolysis hydrogen production		/
	long duration hydrogen-based energy storage		V

Carbonate power generation platforms

400-cell fuel cell stack package

Four-stack module 1.4MW

47% electrical efficiency up to 90% total efficiency

1.4 MW net power

47% electrical efficiency up to 90% total efficiency

Tri-generation 2.35 MW net power 1,270 kg/day hydrogen 1,400 gal/day water

Carbon Recovery 1.3-1.8 MW power 20+ Mt/day CO2

14 MW (Derby, CT)

15 MW (Bridgeport, CT)

59 MW (Korea) Large-scale fuel cell parks

Carbonate power generation applications

Grid Support with CHP

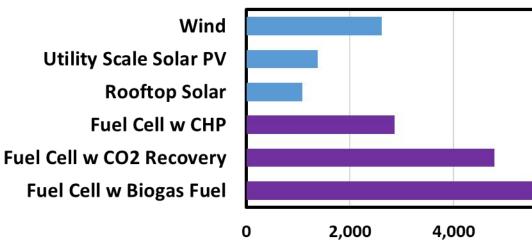
- o 20 MW site built in 2018
- o Power sold to grid
- o Heat sold to district heating
- o 6 month construction time
- o Easily scalable

Grid Support / Urban Redevelopment

- o 15 MW on 1.5 acres
- o Power sold to grid
- o Enhanced resiliency
- o Brownfield revitalization
- o 12 mo. Installation

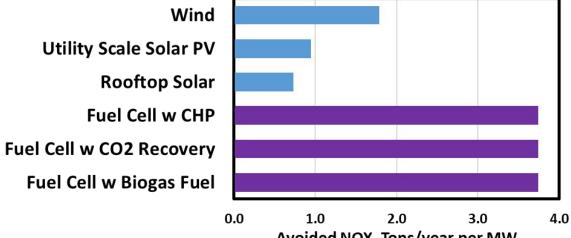
Resiliency for Pharma

- 5.6 MW w/steam for company campus
- Reliable power solving local grid instability
- o Immediate cost savings
- o Complements ESG goals


Fuel Cell / Solar Integration

- o 2.8 MW fuel cell on 1/4 acre
- o 2.2 MW solar on ~9 acres
- o Utility-owned, rate-based
- o Enhanced resiliency

MORE THAN 15 MILLION MWH GENERATED BY CARBONATE POWER PLATFORMS


Effective emissions reductions

	Capacity Factor, %			Avoided Emissions, Tons/y per MW			
		NOX	РМ	CO2	NOX	PM10	CO2
Average US Grid		0.96	0.0495	1405			
Carbonate Fuel Cell with biogas fuel	90%	0.01	0.00002	0	3.7	0.20	5,540
Carbonate Fuel Cell w CO ₂ Recovery	90%	0.01	0.00002	189	3.7	0.20	4,795
Carbonate Fuel Cell with CHP	90%	0.01	0.00002	680	3.7	0.20	2,859
Rooftop Solar	18%				0.7	0.04	1,077
Utility Scale Solar PV	23%				0.9	0.05	1,385
Wind	43%				1.8	0.09	2,616

Avoided CO₂, Tons/year per MW

6,000

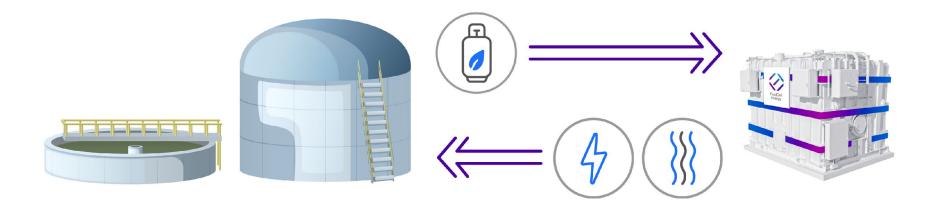
Avoided NOX, Tons/year per MW

Sources:

Grid emissions rates for NOX and CO2 From EPA eGrid 2022, US Average non-baseload rates PM emissions from EPA eGrid PM 2.5 US average for 2020 from eGrid 2022 Capacity factor for solar are averages of ranges from Lazard LCOE Analysis version 17, June 2024

FuelCell Energy

Fuel cell applications at treatment plants



Deploying fuel cells at water treatment facilities provides significant benefit to water treatment plant operations:

- On site production of clean power and heat
- In many cases, lower cost electricity than available from utility
- Utilization of on-site biogas
 - Avoided flaring
 - Avoided emissions from flaring or combustion-based power generation
- Optional co-production of valuable bi-products
 - Hydrogen
 - Carbon Dioxide
 - Water

Biogas in. Renewable energy out

- Runs directly off digester gas at high efficiency to produce renewable electricity and useful heat.
- Our proprietary treatment system removes siloxanes and sulfur compounds to maximize useable biogas.
- The gas does not need to be cleaned up to pipeline standards, reducing cost and improving efficiency.

Our fuel cell systems are designed to thrive in applications that use anaerobic digester gas

Digester gas vs natural gas

Natural Gas

- 90 100 % Methane, balance typically higher hydrocarbons
- 900 1000 Btu/ft³
- Dry
- Very Low Oxygen, except peak shave gas
- Odorized for safety, typically 3ppm sulfur, max 20 ppm

Digester Gas

- 50% 80% Methane (60% typical), balance typically CO₂
- 500 800 Btu/ft³, 550 Btu/ft³ typical
- High humidity
- Fraction to a few percent Oxygen
- Sulfur present naturally, at tens to hundreds of ppm, also often contains Siloxanes

Decades of experience with digester gas as fuel

- FuelCell Energy's first commercial powerplant sale was for a biogas application, at a Kirin Beer brewery in Japan
- This was followed by multiple applications at breweries, food waste processors, and municipal water treatment plants
- An advanced feature set has been developed to optimize the application of carbonate fuel cells with biogas:
 - Added fuel flow capability to handle lower Btu content
 - Developed dual fuel and fuel blending approaches to deal with digester gas flow interruptions
 - Developed improved fuel treatment and clean up technology and improved technology for monitoring impurities

FuelCell Energy

250kW Carbonate CHP Powerplant deployed at Kirin Brewery, Japan, in 2003

FuelCell Energy biogas application advantages

High level of CO₂ tolerance: Our carbonate fuel cells can operate at full power with fuel CO_2 content up to 40% and with only minor degradation up to 50%.

Dual-fuel capability: Our carbonate fuel cells can operate on blends of on-site biogas and natural gas, maintaining output during biogas availability fluctuations

Industry-leading gas cleanup: FCE has multiple biogas-fueled installations with proven experience in removing fuel contaminants (sulfur, siloxanes, water, oxygen)

Advanced fuel gas monitoring: FCE's proprietary approach to sulfur detection provides industry-leading contaminant sensitivity

Combined heat and power (CHP) platform: Industrial scale renewable electricity and useful heat for plant operations and digester heating needs. High overall Digester Gas CHP efficiency (electricity + heat output) maintained above 70% LHV efficiency under normal system aging

Expertise developed over two decades of biogas projects

City of Riverside (1.4 MW)

The SureSource 1500[™] fuel cell plant cleans and consumes renewable biogas from the wastewater treatment process to generate carbon-neutral power and heat for the facility.

•24/7 power profile•Limited capital costs•Heat supports anaerobic digesters

San Bernardino (1.4 MW)

The SureSource 1500[™] fuel cell plant supports the City of San Bernardino Municipal Water Department using anaerobic digester gas (ADG) and supplemental natural gas as needed.

Carbon-neutral powerHeat support anaerobic digestersBiogas cleaned with FCE conditioning system

Tulare (2.8 MW)

The SureSource 3000[™] fuel cell system is fueled by the City's biogas which is treated using the SureSource Treatment[™] fuel cleaning system.

- · Carbon-neutral power
- · Now uses biogas instead of flaring it
- Benefits from the state's BioMAT program

We have more than 500,000 operating hours of experience from decades of biogas-fueled projects

California Air Resources Board (CARB) certified for operation on biogas at low emissions

California onsite biogas operating experience

- Our carbonate fuel cells are certified under CARB standards, expediting the permitting process in certain clean air districts.
- Outside the state of California, the CARB 2007 certification can independently validate the clean air profile of our plants.
- When operating on biogas, fuel cells are considered low-carbon or even carbon-negative (depending on the type of biogas).
- The fuel cell's chemical reaction is virtually free of NOx, SOx, and particulate matter emissions.
- The fuel cell can also improve local air quality by allowing a site to turn off their boilers or eliminating the need to flare biogas.
- Fuel cell projects also qualify for many incentive programs.

Our platform's clean emissions profile allows for a faster and simpler path to air permitting FuelCell Energy

Carbonate fuel cell power generation platforms

FuelCell Energy's carbonate platform has demonstrated our ability to provide low-carbon, dispatchable power for a variety of applications worldwide.

After 20+ years of operations, the carbonate fuel cell platform continues to evolve to meet tomorrow's energy needs for:

- Utility-scale power
- Commercial and industrial CHP
 applications
- On-site biogas
- Combustion-free, quiet, compact generation
- CARB emission-compliant generation
- Microgrid applications
- Datacenter power
- Carbon solutions

FuelCell Energy

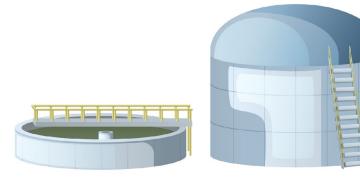
	1500	3000		
Net Power Output	1.4 MW	2.8 MW		
Heat Energy for Recovery, 250°F / 120°F	2,216,000 BTU/h / 3,730,000 BTU/h	4,433,000 BTU/h / 7,460,000 BTU/h		
Efficiency LHV	47% +/- 2%			
NOx Emissions	0.01 lb/MWh			
SOx Emissions	0.05 g/MWh			
CO2 Emissions	980 lb/MWh			
CO2 Emissions with Heat Recovery	520-680 lb/MWh			

Solid Oxide fuel cell power generation platform

Benefits

- Scalable from 250 kW to multi-MW installations
- Low levelized cost of electricity (LCOE)
- Low carbon footprint for improved sustainability
- Fuel flexibility and future-proofing through H₂ blending
- Microgrid-capable

FuelCell Energy


- Rapid deployment with reduced site design, installation and commissioning
- Repeatable, factory-certified performance

	Natural Gas Fuel	Biogas Fuel (60% Methane)		
Net Power Output	250 kW			
Part Power Capability	10% – 100%			
Dynamic Response	10% per minute			
Heat Output (Max)	382,000 BTU/h	471,000 BTU/h		
Efficiency, Electrical / Overall (LHV)	62% / 90%	58% / 90%		
Dual-Fuel Option	Natural Gas & Hydrogen	Natural Gas & Biogas		
Fuel Blending Range	0% - 100% Hydrogen	0% - 100% Biogas		
NOx and CO Emissions	0.01 lb/MWh			
CO2, Electric Only / With Heat Recovery	715 lb/MWh / 494 lb/MWh	Neutral to negative dependent on biogas source		
Noise	72 dBA @ 10 ft, option for < 65 dBA			

Example of digester fuel cell application

Digester gas:

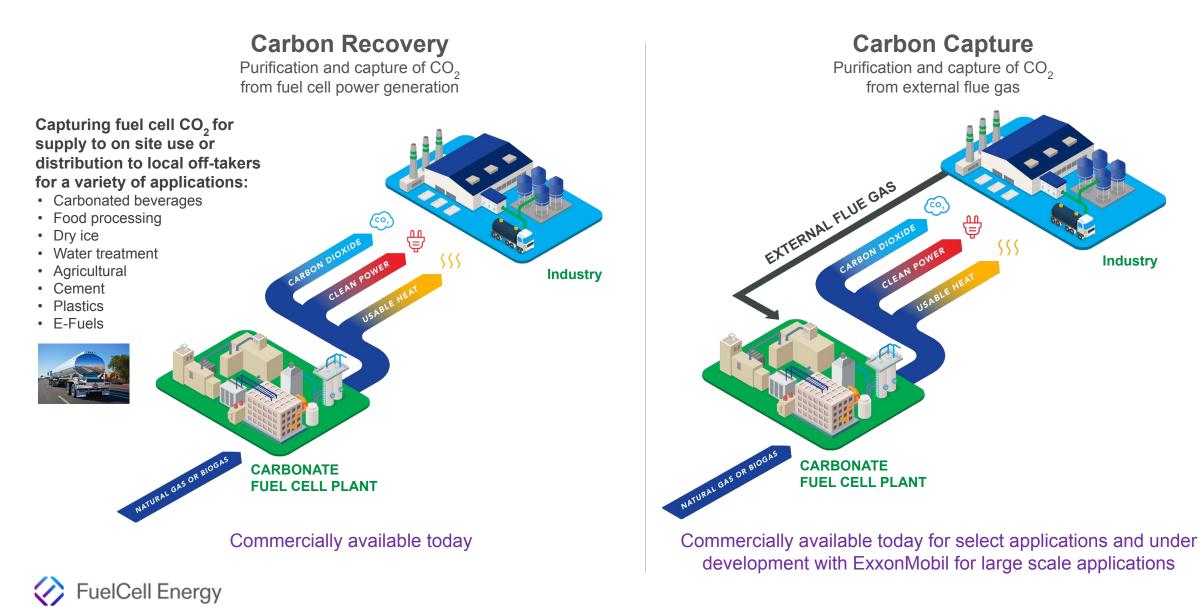
- 18,750 scfh
- 10.2 MMBtu/h, 3MW LHV

45 MGD digester

1.4MW carbonate fuel cell

Fuel cell output:

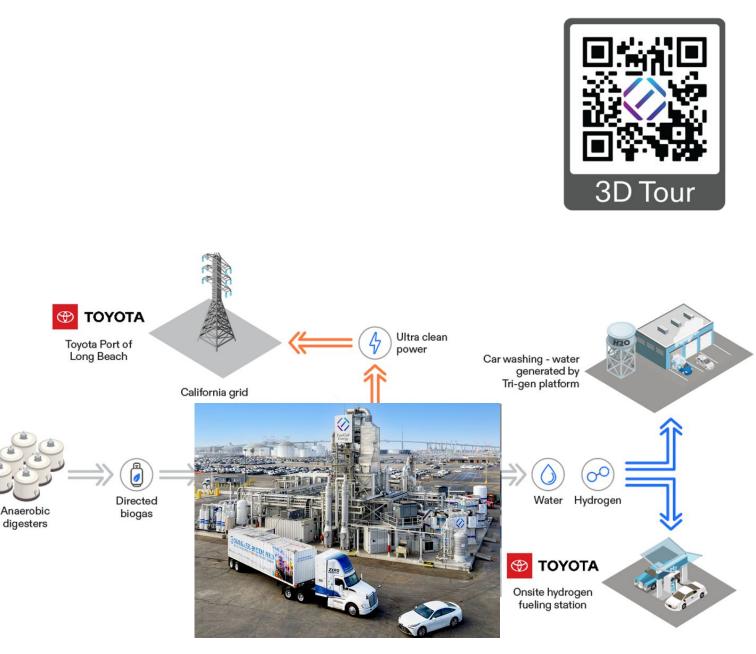
- 1.4 MW power at 47% LHV efficiency
- 1.4 MMBtu/h heat to support digester
- ~2MMBtu/h additional heat available for other applications


Digester production and heat requirement based on estimates in:

Opportunities for Combined Heat and Power at Wastewater Treatment Facilities: Market Analysis and Lessons from the Field;

U.S. Environmental Protection Agency, Combined Heat and Power Partnership, October 2011

Carbonate CO_2 recovery and capture applications


Powering Toyota's Port of Long Beach operations

Tri-gen system produces power, hydrogen and water from directed biogas.

Tri-gen: How it works

- Hydrogen production from methane reforming using fuel cell heat and water during power co-production
- Compared to conventional steam methane reforming (SMR):
 - No fuel combustion for process heat
 - No water consumption
- Avoided combustion emissions, lower CO_2
- The system produces up to:
 - 2.3MW of electricity
 - 1200 kg of hydrogen per day
 - 1400 gallons of water per day



Tri-gen on-site biogas application

- Operation with on-site biogas may be best value proposition
 - Low-cost renewable fuel
 - Minimal fuel upgrading required since carbonate can operate on dilute biogas
 - Co-production of power, heat, and water supports water treatment facility operation
 - FCE has extensive experience in biogas processing and on-site biogas power projects at wastewater treatment plants and breweries
 - The first demonstration of Tri-gen was at the wastewater treatment plant of Orange County Sanitation District in Fountain Valley, CA using on-site biogas with on-site hydrogen filling station

Questions?

Contact information: Tony Leo EVP and Chief Technology Officer FuelCell Energy <u>tleo@fce.com</u> <u>https://www.fuelcellenergy.com/contact-us</u>

https://www.fuelcellenergy.com/solutions/waste/wastewater-treatment-plants

